
### Lecture 3

# **Data Science Workflows and Cases**

Haoyu Yue / yohaoyu@washington.edu
Ph.D. Student, Interdisciplinary Urban Design and Planning
University of Washington

RE 519 Real Estate Data Analytics and Visualization
Course Website: <a href="https://www.yuehaoyu.com/data-analytics-visualization/">www.yuehaoyu.com/data-analytics-visualization/</a>
Autumn 2025

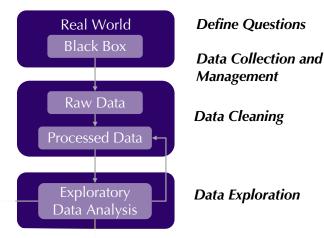




### **Data Science Workflow**

### From Real World to Data Representation

### Define the questions and some key issues, such as:

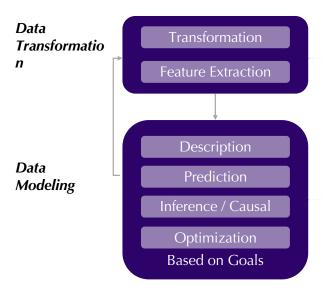

- Unit of analysis (household, property, region, etc.)
- Temporal and spatial extent
- Variables, including explanatory and outcome variables

#### Get your data and understand it:

- The source and quality of datasets
- Population or samples? Data types? Measurements?
- Data licensing and privacy/ethics issues

#### **Start to process the datasets:**

- All kinds of errors in the data, such as missing values, outliers, data replication, and different spatial boundaries
- All kinds of inconsistencies in the data, such as different units, date formats, and naming styles
- Tidy data principle (we will talk about this in the lab)




#### **Conduct exploratory data analysis:**

- Explore descriptive statistics, the distribution of variables, and the relationship among variables
- Refine research questions and clean the data again if needed

## **Data Science Workflow**

### **Data Modeling**



#### **Data transformation before modeling:**

- You need to have a sense of which model to use. stions
- Do some numeric transformation if needed: log transformation, standardized

  Data Collection
- Construct new variables if needed, such as GDP per capita
- Select the most important variables using domain knowledge, correlation, Principal Component Analysis (PCA), etc.

### Start data modeling (we classify based on purposes here):

- Description (especially if you have data for the population)
  - To understand the patterns, we can use visualization, clustering, and PCA etc.
- **Prediction** (we do not care about the relationship, but the accuracy)
  - Regression, machine learning, and deep learning, etc.
- Inference / Causal (we care about their relationship!)
  - Regression, causal inference, and hypothesis testing
  - Correlation is not a causal relationship!
- **Optimization** (find the best solution)
  - · Simulation, linear programming, etc..

### **Data Science Workflow**

### **Visualization and Communication**

### When you have some conclusions after data analysis:

- You need to explain and report your results to audiences.
  - Who is your audience?
  - What is the key message/takeaway?
- Make nice and effective visualizations to support your message
- Explain the results and talk about the implications
- Maybe suggest actionable steps
- Acknowledge the limitations of your analysis

Visualization and Reporting

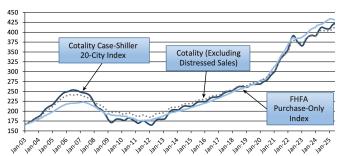
Define Questions

Data Collection and Management

The workflow we discussed is the ideal picture of data analysis and a simplified one.

In reality, the process is messy, iterative, and full of trade-offs.

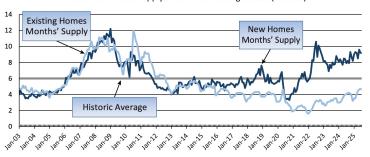
The real skill is to adapt, revise, and still deliver credible and useful insights.


Interpretation and Communication

Descriptive – Predictive – Diagnostic Inferential / Causal – Prescriptive

# WHAT HAPPENED?

### Month-to-Month Home Price Changes Through June


Monthly House Price Trends by Index (\$ Thousands)

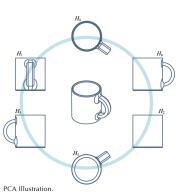


Sources: Standard & Poor's, Federal Housing Finance Agency, Cotality (formerly CoreLogic), and HUD. See Note 1. Sources and Methodology.

# Months' Supply of Homes for Sale Remained the Same for New Homes but Fell for Existing Homes

National Months' Supply of New and Existing Homes (Months)




Sources: Census Bureau, National Association of REALTORS®, and HUD.

Office of Policy Development and Research. (2025). Housing Market Indicators Monthly Update August 2025. https://www.huduser.gov/portal/ushmc/hmi-update.html

Descriptive – Predictive – Diagnostic Inferential / Causal – Prescriptive

### 17 Variables → Principal Component Analysis (PCA) → Reduced to 5 PCs

Market size and dynamics Population 1 Population growth (%) 1 Housing stock (no. of flats) 1 Vacancy rate (%) 1 Price level and dynamics Rents (€/sam) 2 Rental growth (%)<sup>2</sup> Purchase prices condominiums (€/sqm) 2 Purchase price growth (%)<sup>2</sup> Gross initial yield (%) Socioeconomic indicators and dynamics Purchasing power per household (€) 3 Purchasing power growth (%) 3 Unemployment (%) Rent affordability (%) 1, 2, 3 Price affordability Ownership rate (%) 1 Demographics Age cohort: 18-35 years (%) 1

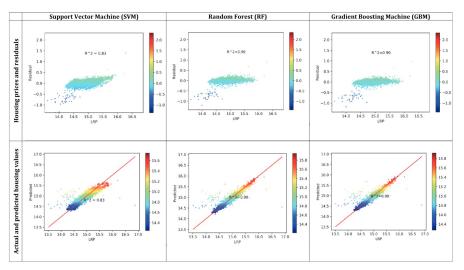


### K-means Clustering

### **Example Conclusion:**

German residential markets can best be segmented into four groups.

Source: Visualize ML: https://github.com/Visualize-ML


Wiersma, S., Just, T., & Heinrich, M. (2022), Segmenting German Housing Markets Using Principal Component and Cluster Analyses. International Journal of Housing Markets and Analysis, 15(3), 548-578. https://doi.org/10.1108/IIHMA-01-2021-0006

Note: The five new federal states (former GDR) are depicted in dark grey

Cluster

Change of age cohort: 18–35 years (%) 1

Descriptive - Predictive - Diagnostic | Prescriptive |



Ho, W. K. O., Tang, B.-S., & Wong, S. W. (2021). **Predicting Property Prices with Machine Learning Algorithms**. Journal of Property Research, 38(1), 48–70. https://doi.org/10.1080/09599916.2020.1832558

# WHAT WILL HAPPEN?

Mostly based on machine learning algorithms, the most important performance indicator is **prediction accuracy.** Because we care about the prediction power of the model on future (unseen) data.

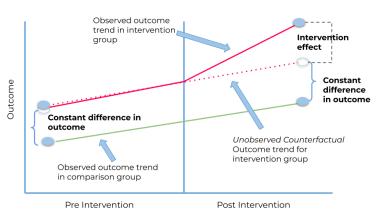
#### **Example Conclusion:**

Each method can achieve an accuracy at XX levels in property price prediction.

Descriptive – Predictive – Diagnostic Inferential / Causal – Prescriptive

| PEN | ED? |
|-----|-----|

| Hedonic price model coefficients Coefficients                                                                                           | fficients | Significance (p) |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|
| $\beta_0$ Bracket (whether or not a pair of sales for a property occurred on either side of one or more flood events within a postcode) | 14.0%     | < 0.001          |
| ∝ <sub>0</sub> Bracket × Risk High                                                                                                      | -6.6%     | 0.051            |
| $\propto_1$ Bracket $	imes$ Flood Zone                                                                                                  | -9.4%     | 0.092            |
| ∝ <sub>2</sub> Bracket * Flood Zone * Risk High                                                                                         | -21.8%    | < 0.001          |
| X <sub>3</sub> Bracket X Flood Zone X Flood History                                                                                     | 19.0%     | 0.034            |
|                                                                                                                                         | -12.5%    | < 0.001          |
| X <sub>5</sub> Bracket <sup>★</sup> Flood Zone <sup>★</sup> House Type                                                                  | 9.1%      | 0.215            |
| ∝ <sub>6</sub> Bracket * Flood Zone * Recovery                                                                                          | 24.2%     | < 0.001          |
| γ <sub>0</sub> Year of First Sale                                                                                                       | -6.5%     | < 0.001          |
| $\gamma_1$ Year of Second Sale                                                                                                          | 3.9%      | < 0.001          |


Thompson, J. J., Wilby, R. L., Hillier, J. K., Connell, R., & Saville, G. R. (2023). Climate Gentrification: Valuing Perceived Climate Risks in Property Prices. Annals of the American Association of Geographers, 113(5), 1092–1111. https://doi.org/10.1080/24694452.2022.2156318

#### **Example Conclusion:**

The statistically significant relationship (**associations**) between housing prices and other variables.

Descriptive – Predictive – Diagnostic <sub>Inferential / Causal</sub> – Prescriptive





DID. Source: https://medium.com/bukalapak-data/difference-in-differences-8c925e691fff

Cao, J., Huang, B., & Lai, R. N. (2015). On the Effectiveness of Housing Purchase Restriction Policy in China: A Difference in Difference Approach. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2584275 Whether one intervention **causes** the changes in the outcome.

#### **Example Conclusion:**

Housing purchase restriction policy in China **triggered** a substantial decline in the property price and transaction volume. The policy had no measurable **effects** on the nationwide construction boom.

Descriptive - Predictive - Diagnostic | Prescriptive |

|  | T   |
|--|-----|
|  | DO? |

| in Millions |          | Inflex 30 | Flex 30 | Flex 40 | Flex 50 | Inflex 60 |
|-------------|----------|-----------|---------|---------|---------|-----------|
| Exped       | ted NPV  | (\$191)   | \$14    | \$9     | \$4     | \$14      |
| Me          | edian    | (\$251)   | (\$145) | (\$137) | (\$128) | (\$95)    |
| M           | ode      | (\$300)   | (\$500) | (\$500) | (\$300) | (\$300)   |
| Std D       | eviation | \$371     | \$710   | \$714   | \$719   | \$731     |
| Percentiles |          |           |         |         |         |           |
| Value       | 5%       | (\$686)   | (\$792) | (\$847) | (\$901) | (\$962)   |
| At          | 10%      | (\$604)   | (\$708) | (\$742) | (\$770) | (\$808)   |
| Risk        | 25%      | (\$455)   | (\$543) | (\$535) | (\$527) | (\$502)   |
| Median      | 50%      | (\$251)   | (\$145) | (\$137) | (\$128) | (\$95)    |
| Value       | 75%      | \$7       | \$400   | \$397   | \$388   | \$414     |
| At          | 90%      | \$295     | \$979   | \$963   | \$948   | \$977     |
| Gain        | 95%      | \$509     | \$1,383 | \$1,372 | \$1,349 | \$1,380   |

Figure 18: 2 WTC Financial Model Results

The flexible 30 floor design and the inflexible 60 floor design outperform the other buildings. Note that the flexible 30 floor design has the lowest potential losses, yet maintains good gains when the economy is good.

Leung, K. C.-K. (2014). Beyond DCF Analysis in Real Estate Financial Modeling: Probabilistic Evaluation of Real Estate Ventures [Massachusetts Institute of Technology]. https://dspace.mit.edu/bitstream/handle/1721.1/87612/879666642-MIT.pdf;seguence=2

A decision framework and prescriptive modeling steps to guide practitioners on how to manage uncertainty and make better ex ante investment decisions.

#### **Example Conclusion:**

Under a particular condition/scenario, the expected return is XXX, while the associated uncertainty is XXX.

# **Tools for Data Analysis**

### **Some Example Tools**

Flexibility/reproducible

**Basic** 

• Excel/Google Sheets – they help understand data and some data cleaning

### **Coding-lite**

- SPSS/Stata widely used in social science
- ArcGIS/QGIS for geospatial analysis

### **Programming-based**

- R/Python general-purpose language for regression, machine learning, visualization, and more
- SQL for managing/querying large datasets

#### **Urban/Real Estate Tools**

- CoStar a platform for commercial real estate information and analytics (please let me know if you
  want to get access to the platform this quarter)
- UrbanSim urban simulation and planning, developed by a previous UW professor, Paul Waddell

Easy-of-Use

# **Tools for Data Analysis**

### Value of Reproducibility and Open



### **How to Achieve Open and Reproducible Data Science**

- Use Programming to Process Data like Python or R
- Use Expressive Names for Files and Directories to Organize Your Work
- Use Findable, Accessible, Interoperable, and Re-usable (Wilkinson et al. 2016) Data
- Protect Your Raw Data
- Use Version Control (Git and GitHub) and Share Your Code
- Document Your Workflows
- Design Workflows That Can Be Easily Recreated

Source: What Is Open Reproducible Science. https://earthdatascience.org/courses/intro-to-earth-data-science/open-reproducible-science/get-started-open-reproducible-science/

### **Tools for Data Visualization**

### **Out-of-the-Box and Programming Visualization Tools**

Chart Typologies
Excel, Google Charts
Tableau, Power BI

Visual Analysis Grammars ggplot2, Observable Plot, Vega-Lite

Visualization Libraries
Matplotlib, D3, Vega

Component Architectures
VTK, Prefuse

**Graphics & Event APIs** 

Processing, OpenGL, Java2D

Expressiveness

Easy to use without much technical knowledge, but only limited options and low-quality graphics. Cannot reproduce or make it interactive.

Facilitate rapid exploration with concise specifications by omitting low-level details.

Offer fine-grained control for composing interactive graphics. But requires **verbose** specifications and technical expertise.

For visualization professionals

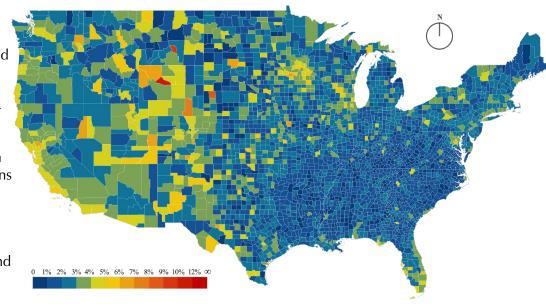
Source: Visualization Tools, CSE 512 by Jeffrey Heer; https://courses.cs.washington.edu/courses/cse512/25sp/

Easy-of-Use

# **Tools for Data Visualization**

### **Mapping Tools**

### **ArcGIS/QGIS**


- Lots of spatial analysis and mapping tools
- No coding required
- RE 497/597, URBAN 504

### **Mapbox**

- Online mapping platform
- Pay for advanced functions

### **Programming Approach**

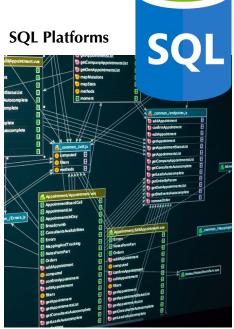
- We will cover some mapping techniques in R
- Hard to navigate maps and not intuitive



# Other Tools for Data Analysis/Visualization



Microsoft PowerPoint

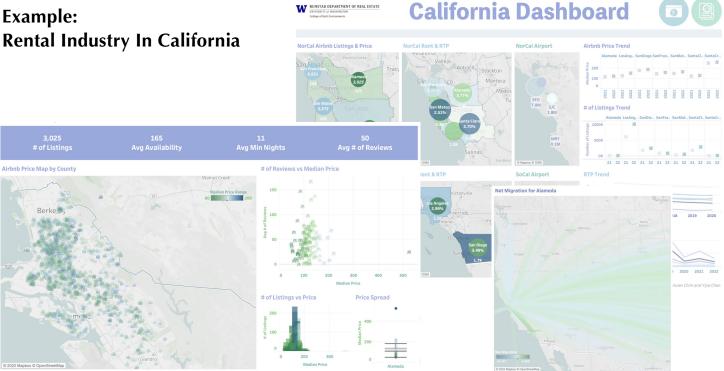



Adobe Photoshop



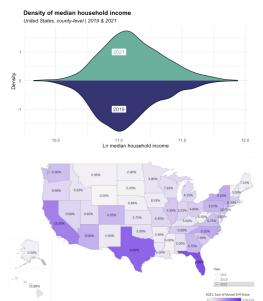
Adobe Illustrator

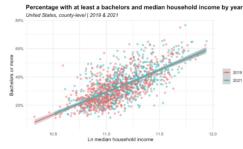


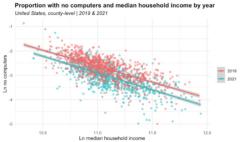



# **Data Analytics and Visualization Projects**

### 30% of the Total Grade (Website Link)


- 1~3 students for each group, and we expect everyone to spend 20~30 hours on the project.
- The project could be, for example:
  - A modeling of interesting datasets to derive new insights
  - Pure visualization for some datasets
  - A replication of an interesting academic article
- The requirements and their dates:
  - **10/08** Team Formation (1%)
  - 11/12 Project proposal (1~2 pages; 5%), you can submit anytime earlier for feedback
  - 12/03 Draft work presentation (in the last class, graded by peers and instructors; 8%)
  - 12/12 Final delivery (could be any format, like report, website, poster; 15%)
  - **12/12** Peer Review (1% of the total grade)


### **Example: Rental Industry In California**




### **Example:**

### **Tax-induced migration in the United States**







Moved states | 2019 & 2021

| Horea States   Lors ( | W FOFT              |                            |                       |                     |  |
|-----------------------|---------------------|----------------------------|-----------------------|---------------------|--|
|                       | Dependent variable: |                            |                       |                     |  |
|                       | w/o state           |                            | DiffState<br>w/ state | w/ state            |  |
| NoIncomeTax           |                     | 0.007*** (0.002)           |                       |                     |  |
| HighestRate           |                     |                            |                       | -0.111<br>(0.109)   |  |
| year2021              | 0.002<br>(0.001)    | 0.002<br>(0.001)           | 0.002*<br>(0.001)     | -0.003<br>(0.002)   |  |
| log(MedianHomePrice)  |                     |                            |                       | -0.0001<br>(0.002)  |  |
| log(MedianHHIncome)   |                     |                            |                       | -0.034**<br>(0.004) |  |
| perBachelorsOrMore    |                     |                            |                       | 0.054***            |  |
| perStudents           |                     |                            |                       | 0.001<br>(0.015)    |  |
| perNoComputers        |                     |                            |                       | -0.201**<br>(0.035) |  |
| NoIncomeTax:year2021  |                     | -0.001<br>(0.002)          | -0.001<br>(0.002)     |                     |  |
| HighestRate:year2021  |                     |                            |                       | 0.019<br>(0.024)    |  |
| Constant              |                     | 0.025***<br>(0.001)        |                       |                     |  |
| Adjusted R2           | 0.018               | 1,264<br>0.018<br>8.684*** | 0.301<br>11.669***    | 0.407               |  |
| Note:                 |                     | *p<0.1;                    | **p<0.05;             |                     |  |

### Reminders

- Start to think about the final project and form groups (Oct 8, this Wednesday).
- Lab 1 will be due TODAY (Oct 6).
- CoStar access: fill out the form by TODAY!

### Thank you!

Haoyu Yue / yohaoyu@washington.edu
Ph.D. Student, Interdisciplinary Urban Design and Planning
University of Washington

RE 519 Real Estate Data Analysis and Visualization

Course Website: <a href="www.yuehaoyu.com/data-analytics-visualization/">www.yuehaoyu.com/data-analytics-visualization/</a>

Autumn 2025

The course was developed based on previous instructors: Christian Phillips, Siman Ning, Feiyang Sun Cover page credits: Visax