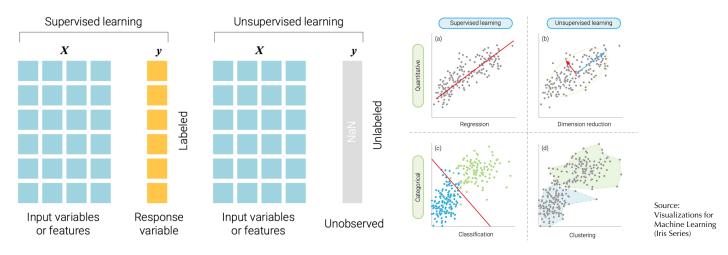
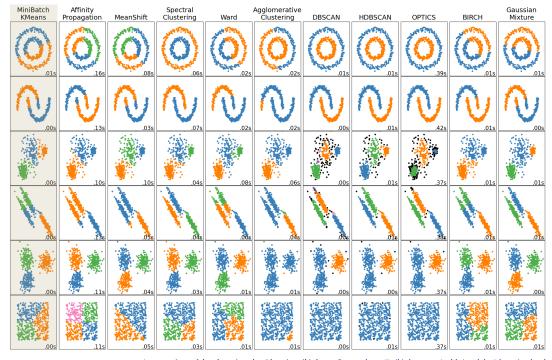
Lecture 9


Unsupervised Learning

Haoyu Yue / yohaoyu@washington.edu
Ph.D. Student, Interdisciplinary Urban Design and Planning
University of Washington

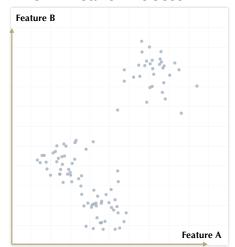
RE 519 Real Estate Data Analytics and Visualization
Course Website: www.yuehaoyu.com/data-analytics-visualization/
Autumn 2025

Supervised vs Unsupervised Learning

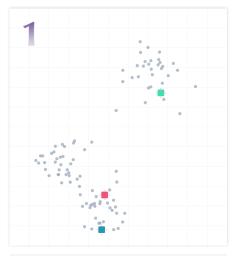


Supervised learning: Learning a function that maps inputs to outputs using labeled examples (Bishop, 2006). **Unsupervised learning**: Learning hidden structure from unlabeled data (Hastie, Tibshirani & Friedman, 2009).

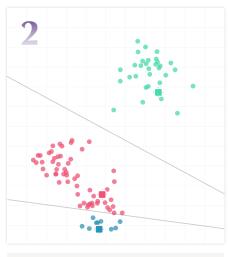
Clustering


Clustering is one of the most common used tools to recognize the unknown *class* based on some known features.

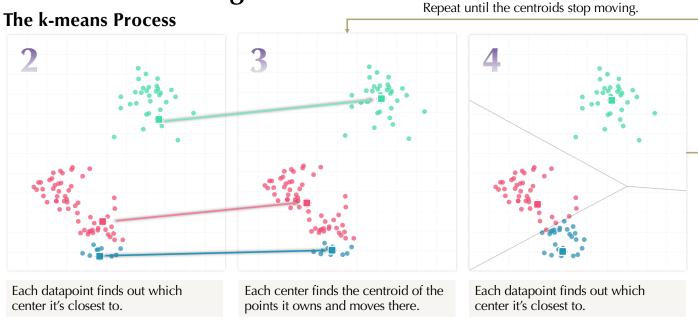
There are many methods for different patterns, and we will introduce kmeans, which is the most classical one (often see as the baseline).



 $A\ comparison\ of\ the\ clustering\ algorithms\ in\ scikit-learn.\ Source: \underline{https://scikit-learn.org/stable/modules/clustering.html}$


The k-means Process

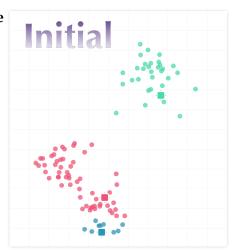
Users decide the number of clusters (k, hyperparameter).

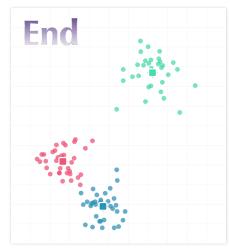


Randomly guess k cluster center locations (the initial centers matter).

Each datapoint finds out which center it's closest to.

Source: Gemini https://gemini.google.com/share/9a5e4746162b

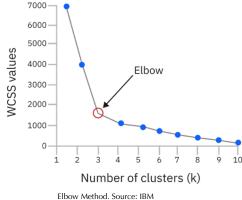

Source: Gemini https://gemini.google.com/share/9a5e4746162b


How to Evaluate the Clustering Results

Most common measure is **sum of square error** (AKA **WSS**, within-cluster sum of squares): for each point, the error is the distance to the nearest center.

$$SSE = \sum_{i=1}^k \sum_{x \in C_i} \operatorname{distance}^2(rac{m{m}_i, m{x}}{m{\omega}_i})$$
 Each data point

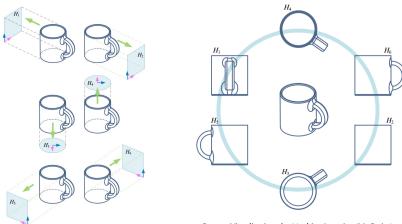
We prefer the clustering with the smallest error (SSE).



Source: Gemini https://gemini.google.com/share/9a5e4746162b

Some Problems of k-means

- **Normalization**: we are measuring the distances between points. So, normalization is required before training.
- How to decide on k, a hyperparameter? Not using cross-validation. But run different k and check the diagrams using <u>Elbow method</u> (there are more methods).
- How to decide on the initial centers? Multiple runs or K-means++ approach (optional: <u>Computing initial centroids in k-means</u>).
- K-means has problems when clusters are of differing sizes, densities or non-globular shapes. Find other clustering approaches. Domain knowledge matters!
- K-means has problems when the data contains outliers or redundant features. Remove them. Domain knowledge matters!


Elbow Method. Source: IBM https://www.ibm.com/think/topics/k-means-clustering

Other Unsupervised Learning Methods

For dimensionality reduction:

Principal Component Analysis (PCA)

Finds the directions of maximum variance in the data and projects the data onto those directions to reduce dimensionality.

Source: Visualizations for Machine Learning (Iris Series)

Thank you!

Haoyu Yue / yohaoyu@washington.edu Ph.D. Student, Interdisciplinary Urban Design and Planning University of Washington

RE 519 Real Estate Data Analysis and Visualization
Course Website: www.yuehaoyu.com/data-analytics-visualization/
Autumn 2025

The course was developed based on previous instructors: Christian Phillips, Siman Ning, Feiyang Sun Cover page credits: Visax